Polarization in the ALMA era

Chat Hull

NAOJ Fellow -

National Astronomical Observatory of Japan NAOJ Chile Observatory Joint ALMA Observatory

27 March 2018

The ALMA Quest for our Cosmic Origins Joint ALMA Observatory Santiago, Chile

Overview

- Introduction: pesky position angles
- What came before...
- The ALMA era
 - Low-mass protostars
 - High-mass star formation
 - Disks
 - Ongoing efforts: spectral-line and circular polarization

We live in a beautiful, magnetized Universe

Scaled to nearby SFRs

Planck Collaboration planckandthemagneticfield.info

Circa April 2015, <1 year before the first ALMA polarization PI data

were delivered

What is the role of the magnetic field in star formation?

Incidental?

Fundamental?

But first...let's talk about everyone's favorite calibrator

It all began with 3C 286

April 2013 (during ALMA Cycle I, a mere 5 months after Pierre was appointed ALMA Director)

Stuartt: "Do you have the details and some idea of the error bars from your measurements?"

Plambeck: "We tend to find PAs 37 to 41 at 230 GHz."

ALMA

Stuartt: "We got 39....so seems reasonable." ... "Even George was pretty happy about the calibration accuracy...which is saying a good deal."

ALMA

J2000 Declination

It actually all began with BIMA, CARMA and the SMA

Polarization (dust emission) ALIGNED DUST GRAINS We'll also be seeing Polarization from synchrotron (linear), cyclotron (circular), spectral lines (linear and circular), and scattering (linear)! Polarization must be rotated by 90° to show magnetic field orientation **BACKGROUND STAR** (unpolarized) **ORDERED MAGNETIC FIELD**

CARMA

Combined Array for Research in Millimeter-wave Astronomy

Photo credit: C. Hull

 -6×10 -m, 9×6 -m, and 8×3.5 -m telescopes

alar interit

- Observations at I cm, 3 mm, and
- I mm (polarization!)
- Was located in Cedar Flat, CA (near Bishop)
 - This is me installing a 1 mm polarization receiver between 2010 and 2012

TE MAN

The Submillimeter Array (SMA)

Photo credit: C. Hull

Chat Hull – The ALMA Quest for our Cosmic Origins – 27 Mar 2018

State of affairs before Cycle 2 (low-mass)

State of affairs before Cycle 2 (high-mass)

CARMA

For a review of SMA polarization studies of high-mass tars, see Zhang+2014

State of affairs before Cycle 2 (disks)

Then came ALMA

Chat Hull – The ALMA Quest for our Cosmic Origins – 27 Mar 2018 15

ALMA

K-MARRAM T

The ALMA era Low-mass protostars

Ser-emb 8: a source with a chaotic magnetic field

JCMT Serpens Main

Hull, Mocz, Burkhart+2017 (data from Matthews+2009) 🕈

Keep an eye on the magnetic field strength here (in microgauss)

AREPO simulations

B=1

Chat Hull – The ALMA Quest for our Cosmic Origins – 27 Mar 2018 24

B=100

37350 AU [= 0.2 pc]

3000 AU

The ALMA era Low-mass protostars

Serpens SMMI: a source whose outflow shapes the magnetic field

Hull+2017b

The ALMA era Low-mass protostars

B335: magnetic field shaped by outflow and possible infall

B335: magnetic field shaped by infall & outflow

New ALMA observations of B335, an embedded, low-mass, Class 0 protostar with a magnetic field that lies along both the *outflow cavity* as well as the *dense equatorial plane*

Maury+2018

The ALMA era **Disk polarization**

Chat Hull – The ALMA Quest for our Cosmic Origins – 27 Mar 2018 33

Polarization from mm-wave scattering

High optical depth at high resolution could lead to polarization from self-scattering by large dust grains

Kataoka 2015 See also Kataoka 2016a, 2016b

Polarization from mm-wave scattering

Comparison of model & data

E-field polarization, not inferred magnetic fields

ALMA 870 µm HL Tau polarization

ALMA 870 µm IM Lup polarization

E

ALMA

870 µm (ALMA Band 7)

Chat Hull – The ALMA Quest for our Cosmic Origins – 27 Mar 2018 37

ALMA multi-wavelength HL Tau polarization

Stephens+2017b (incl. C. Hull)

The ALMA era Spectral-line & circular polarization

Spectral-line polarization: IK Tau

SMA

ALMA

Cortés+2015, ALMA EOC memo

Cortés+2017 (incl. C. Hull), ALMA EOC memo

See also Vlemmings+2018

Chat Hull – The ALMA Quest for our Cosmic Origins – 27 Mar 2018 4

41

Summary

- ALMA is confirming previous observations, and taking it to the next level with dramatic increases in sensitivity and resolution
- Progress in all areas of polarimetry: continuum & spectral-line; circular & linear; thermal & non-thermal; and beyond
- Opening new windows into our understanding not only of magnetic fields, but of dust scattering and other types of grain alignment
- The polarized universe is bright!

. .