Starburst to Star Bust: ALMA Sheds Light on Mystery of Missing Massive Galaxies
Press Releases

Starburst to Star Bust: ALMA Sheds Light on Mystery of Missing Massive Galaxies

24 July, 2013 / Read time: 7 minutes

New observations from the ALMA telescope in Chile have given astronomers the best view yet of how vigorous star formation can blast gas out of a galaxy and starve future generations of stars of the fuel they need to form and grow. The dramatic images show enormous outflows of molecular gas ejected by star-forming regions in the nearby Sculptor Galaxy. These new results help to explain the strange paucity of very massive galaxies in the Universe. The study is published in the journal Nature on 25 July 2013.

Galaxies — systems like our own Milky Way that contain up to hundreds of billions of stars — are the basic building blocks of the cosmos. One ambitious goal of contemporary astronomy is to understand the ways in which galaxies grow and evolve, a key question being star formation: what determines the number of new stars that will form in a galaxy?

The Sculptor Galaxy, also known as NGC 253, is a spiral galaxy located in the southern constellation of Sculptor. At a distance of around 11.5 million light-years from our Solar System it is one of our closer intergalactic neighbors, and one of the closest starburst galaxies [1] visible from the southern hemisphere. Using ALMA, the Atacama Large Millimeter/submillimeter Array, astronomers have discovered billowing columns of cold, dense gas fleeing from the centre of the galactic disc.

"With ALMA’s superb resolution and sensitivity, we can clearly see for the first time massive concentrations of cold gas being jettisoned by expanding shells of intense pressure created by young stars," said Alberto Bolatto of the University of Maryland, USA lead author of the paper. "The amount of gas we measure gives us very good evidence that some growing galaxies spew out more gas than they take in. We may be seeing a present-day example of a very common occurrence in the early Universe."

These results may help to explain why astronomers have found surprisingly few high-mass galaxies throughout the cosmos. Computer models show that older, redder galaxies should have considerably more mass and a larger number of stars than we currently observe. It seems that the galactic winds or outflow of gas are so strong that they deprive the galaxy of the fuel for the formation of the next generation of stars [2].

The new ALMA data show the far-more-dense molecular gas getting its initial "kick" from the formation of new stars and then being swept along with the thin, hot gas on its way to the galactic halo. "These features trace an arc that is almost perfectly aligned with the edges of the previously observed hot, ionized gas outflow," noted Fabian Walter, a lead investigator at the Max Planck Institute for Astronomy in Heidelberg, Germany, and a co-author of the paper. "We can now see the step-by-step progression of starburst to outflow."

The researchers determined that vast quantities of molecular gas — nearly ten times the mass of our Sun each year and possibly much more — were being ejected from the galaxy at velocities between 150,000 and almost 1,000,000 kilometers per hour [3]. The total amount of gas ejected would add up to more gas than actually went into forming the galaxy’s stars in the same time. At this rate, the galaxy could run out of gas in as few as 60 million years.

"For me, this is a prime example of how new instruments shape the future of astronomy. We have been studying the starburst region of NGC 253 and other nearby starburst galaxies for almost ten years. But before ALMA, we had no chance to see such details," says Walter. The study used an early configuration of ALMA with only 16 antennas"These spectacular results give an idea about the full power of ALMA when it will operate at its total capacity," enthusiastically adds ALMA Director, Pierre Cox.

More studies with the full ALMA array will help determine the ultimate fate of the gas carried away by the wind, which will reveal whether the starburst-driven winds are recycling or truly removing star forming material.

Notes

[1] Starburst galaxies are producing stars at an exceptionally high rate. As NGC 253 is one of the closest such extreme objects it is an ideal target to study the effect of such growth frenzy on the galaxy hosting it.

[2] Previous observations had shown hotter, but much less dense, gas streaming away from NGC 253’s star-forming regions, but alone this would have little, if any, impact on the fate of the galaxy and its ability to form future generations of stars. This new ALMA data show the much more dense molecular gas getting its initial "kick" from the formation of new stars and then being swept along with the thin, hot gas on its way to the galactic halo.

[3] Although the velocities are high, they may not be high enough for the gas to be ejected from the galaxy. It would get trapped in the galactic halo for many millions of years, and could eventually rain back on the disk, causing new episodes of star formation.

More Information

This research was presented in a paper "The Starburst-Driven Molecular Wind in NGC 253 and the Suppression of Star Formation", by Alberto D. Bolatto et al., to appear in Nature on 25 July 2013.

The team is composed of A. D. Bolatto (Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, USA), S. R. Warren (University of Maryland), A. K. Leroy (National Radio Astronomy Observatory, Charlottesville, USA), F. Walter (Max-Planck Institut für Astronomie, Heidelberg, Germany), S. Veilleux (University of Maryland), E. C. Ostriker (Department of Astrophysical Sciences, Princeton University, USA), J. Ott (National Radio Astronomy Observatory, New Mexico, USA), M. Zwaan (European Southern Observatory, Garching, Germany), D. B. Fisher (University of Maryland), A. Weiss (Max-Planck-Institut für Radioastronomie, Bonn, Germany), E. Rosolowsky (Department of Physics, University of Alberta, Canada) and J. Hodge (Max-Planck Institut für Astronomie, Heidelberg, Germany).

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the Ministry of Science and Technology (MOST) in Taiwan and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Links

Contact:

Valeria Foncea 
Education and Public Outreach Officer
Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 2467 6258
Cell: +56 9 7587 1963
E-mail: [email protected] 

Alberto Bolatto
University of Maryland USA
Tel: +49 6221 528 493
Email: [email protected] 

Fabian Walter 
Max-Planck Institut für Astronomie
Heidelberg, Germany
Tel: +49 6221 528 225
Email: [email protected] 

Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
Charlottesville, Virginia, USA
Tel: +1 434 296 0314
Cell: +1 434.242.9559
E-mail: [email protected] 

Richard Hook
Public Information Officer, ESO
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: [email protected] 

Masaaki Hiramatsu
 
Education and Public Outreach Officer, NAOJ Chile
Observatory
Tokyo, Japan
Tel: +81 422 34 3630
E-mail: [email protected]