ALMA Links with Other Observatories to Create Earth-size Telescope
Announcements

ALMA Links with Other Observatories to Create Earth-size Telescope

10 November, 2015 / Read time: 4 minutes

The Atacama Large Millimeter/submillimeter Array (ALMA) continues to expand its power and capabilities by linking with other millimeter-wavelength telescopes in Europe and North American in a series of very long baseline interferometry (VLBI) observations.

In VLBI, data from two or more telescopes are combined to form a single virtual telescope that spans the geographic distance between them. The most recent of these experiments with ALMA formed an Earth-size telescope with extraordinarily fine resolution.

These experiments are an essential step in including ALMA in the Event Horizon Telescope (EHT), a global network of millimeter-wavelength telescopes that will have the power to study the supermassive black hole at the center of the Milky Way in unprecedented detail.

Before ALMA could participate in VLBI observations, it first had to be upgraded adding a new capability known as a phased array [1]. This new version of ALMA allows its 66 antennas to function as a single radio dish 85 meters in diameter, which then becomes one element in a much larger VLBI telescope.

The first test of ALMA’s VLBI capabilities occurred on 13 January 2015, when ALMA successfully linked with the Atacama Pathfinder Experiment Telescope (APEX), which is about two kilometers from the center of the ALMA array.

On 30 March 2015, ALMA reached out much further by linking with the Institut de Radioastronomie Millimetrique’s (IRAM) 30-meter radio telescope in the Sierra Nevada of southern Spain. Together they simultaneously observed [2] the bright quasar 3C 273. Data from this observation were combined into a single observation with a resolution of 34 microarcseconds. This is equivalent to distinguish an object of less than ten centimeters on the Moon, seen from Earth.

ALMA_VLBI_Globe_nrao_small

ALMA combined his power with IRAM and VLBA in VLBI separated observations. Credit: A. Angelich (NRAO/AUI/NSF)

The most recent VLBI observing run was performed on 1–3 August 2015 with six of the National Radio Astronomy Observatory’s (NRAO) Very Long Baseline Array (VLBA) antennas [3]. This combined instrument formed a virtual Earth-size telescope and observed the quasar 3C 454.3, which is one of the brightest radio beacons on the sky, despite lying at a distance of 7.8 billion light-years. These data were first processed at NRAO and MIT-Haystack in the United States and further post-processing analysis is being performed at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany.

The new observations are a further step towards global interferometric observations with ALMA in the framework of the Global mm-VLBI Array and the Event Horizon Telescope, with ALMA as the largest and the most sensitive element. The addition of ALMA to millimeter VLBI will boost the imaging sensitivity and capabilities of the existing VLBI arrays by an order of magnitude.

Notes

[1] The following groups and institutions participated in the ALMA Phasing Project: National Radio Astronomy Observatory, Academia Sinica Institute of Astronomy and Astrophysics, National Astronomical Observatory of Japan, Smithsonian Astrophysical Observatory, MIT Haystack, MPIfR-Bonn, Onsala Space Observatory, University de Concepcion in Chile, and the Joint ALMA Observatory.

[2] The March observations were made during an observing campaign of the EHT at a wavelength of 1.3 mm.

[3] The VLBA is an array of 10 antennas spread across the United States from Hawaii to St. Croix. For this observation, six antennas were used: North Liberty, IA; Fort Davis, TX; Los Alamos, NM; Owens Valley, CA; Brewster, WA; and Mauna Kea, HI. The observing wavelength was 3 mm.

More information

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Contacts

Valeria Foncea

Education and Public Outreach Officer
Joint ALMA Observatory
Santiago, Chile
Tel: +56 2 467 6258
Cell: +56 9 75871963
Email: [email protected]

Charles E. Blue
Public Information Officer
National Radio Astronomy Observatory
Charlottesville, Virginia, USA
Tel: +1 434 296 0314
Cell: +1 434.242.9559
E-mail: [email protected]

Richard Hook
Public Information Officer, ESO
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: [email protected]

Masaaki Hiramatsu

Education and Public Outreach Officer, NAOJ Chile
Observatory
Tokyo, Japan
Tel: +81 422 34 3630
E-mail: [email protected]