ALMA aplica los métodos de Sherlock Holmes para obtener la mejor imagen de una fusión de galaxias en el Universo lejano
Comunicados de Prensa

ALMA aplica los métodos de Sherlock Holmes para obtener la mejor imagen de una fusión de galaxias en el Universo lejano

26 Agosto, 2014 / Tiempo de lectura: 11 minutes

Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA) y muchos otros telescopios en la Tierra y en el espacio, un equipo internacional de astrónomos ha obtenido la mejor imagen de una colisión entre dos galaxias que tuvo lugar cuando el Universo tenía sólo la mitad de su edad actual. Se sirvieron de una lupa del tamaño de una galaxia para revelar detalles de otro modo invisibles. Estos nuevos estudios de la galaxia H-ATLAS J142935.3-002836 han demostrado que este objeto, complejo y distante, es parecido a una conocida colisión de la galaxia local: las Galaxias Antena.

El famoso detective de ficción Sherlock Holmes utilizaba una lupa para revelar evidencias apenas visibles, pero importantes. Los astrónomos están ahora combinando el poder de muchos telescopios basados en la Tierra y en el espacio [1] con una forma infinitamente más grande de lente cósmico para estudiar un caso de vigorosa formación estelar en el Universo temprano.

140826_ALMA_atlas_01

140826_ALMA_atlas_03

Fig. 1 y 2: Fusión de galaxias en el universo distante amplificada a través de una lente gravitacional. Estas imágenes combinan las vistas desde el telescopio espacial Hubble de NASA/ESA y el telescopio Keck II en Hawái (utilizando óptica adaptativa). Crédito: ESO/NASA/ESA/W. M. Keck Observatory

"Mientras los astrónomos a menudo se ven limitados por la potencia de sus telescopios, en algunos casos nuestra capacidad para ver el detalle es enormemente mejorada por lentes naturales, creadas por el Universo" explica el autor principal, Hugo Messias, de la Universidad de Concepción (Chile) y el Centro de Astronomía y Astrofísica da Universidad de Lisboa (Portugal). "Einstein predijo en su teoría de la relatividad general que, dada la suficiente masa, la luz no viaja en línea recta, sino que se curva de forma similar a la luz refractada por una lente normal".

Estos lentes cósmicos son creados por enormes estructuras como galaxias y cúmulos de galaxias, que desvían la luz de los objetos que hay detrás de ellos debido a su fuerte gravedad — un efecto denominado de lente gravitacional o gravitatorio. Las propiedades de este efecto lupa permiten a los astrónomos estudiar objetos que no serían visibles de otro modo y comparar directamente las galaxias locales con otras mucho más remotas, vistas cuando el Universo era considerablemente más joven.

Pero para que estos lentes gravitacionales funcionen, la galaxia que hace de lente y la que se encuentra detrás, alejada, deben estar alineadas de un modo muy preciso.

Fig. 3: Este diagrama muestra cómo el efecto de lentes gravitacionales alrededor de una galaxia normal enfoca la luz proveniente de una fusión de galaxias con formación estelar muy distantes para crear una imagen distorsionada, pero más brillante. Crédito: ESO/M. Kornmesser

"Estas alineaciones casuales son muy raras y tienden a ser difíciles de identificar", añade Hugo Messias, "pero estudios recientes han demostrado que mediante la observación en longitudes de onda del infrarrojo lejano y el rango milimétrico, podemos encontrar estos casos de una forma mucho más eficiente".

H-ATLAS J142935.3-002836 (o simplemente H1429-0028 para abreviar) es una de estas fuentes y fue encontrada en el sondeo Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Aunque muy débil en las imágenes de luz visible, es una de los lentes gravitatorios más brillantes del infrarrojo lejano encontrado hasta el momento, aunque lo estamos viendo en un momento en el que el Universo tenía sólo la mitad de su edad actual.

Explorar este objeto estaba en el límite de lo posible, por lo que el equipo internacional de astrónomos comenzó una extensa campaña de seguimiento con los telescopios más potentes — tanto en la Tierra como en el espacio — incluyendo a ALMA, el Telescopio Espacial Hubble de NASA/ESA, el Observatorio Keck, el conjunto Karl Jansky Very Large Array (JVLA) y otros. Los diferentes telescopios proporcionaron diversos puntos de vista, que se combinaron para obtener la mejor imagen de este inusual objeto.

Fig. 4: Este vídeo comienza con una visión de la mayor parte del cielo y lleva al espectador a una región al parecer escasamente ocupada de la constelación de Virgo (la Virgen). En el centro, como una débil mancha más, hay un objeto notable: la imagen de una fusión de galaxias lejanas vista a través de una lente gravitacional. Crédito: ESO/Digitized Sky Survey 2. Music: movetwo

Las imágenes de Hubble y Keck revelaron un detallado anillo de luz gravitacionalmente inducido alrededor de la galaxia del frente. Estas imágenes de alta resolución también demostraron que la galaxia que ejercía de lente es una galaxia con el disco de canto — similar a nuestra galaxia, la Vía Láctea — que oscurece partes de la luz del fondo debido a las grandes nubes de polvo que contiene.

Pero este oscurecimiento no es un problema para ALMA y JVLA, puesto que estas dos instalaciones observan el cielo en longitudes de onda más largas, que no se ven afectadas por el polvo. Combinando los datos, el equipo descubrió que el sistema de fondo era en realidad una colisión que está teniendo lugar entre dos galaxias. Desde ese momento, ALMA y JVLA empezaron a jugar un papel clave en la caracterización de este objeto.

En particular, ALMA trazó el monóxido de carbono, que permite hacer estudios detallados de los mecanismos de formación de estrellas en las galaxias. Las observaciones de ALMA también permitieron medir el movimiento del material en el objeto más distante. Esto fue esencial para demostrar que el objeto que se observa a través del lente es, de hecho, una colisión galáctica en curso que da lugar a cientos de nuevas estrellas cada año, y que una de las galaxias del choque aún muestra signos de rotación, lo que indica que era una galaxia de disco justo antes de este encuentro.

Fig. 5: Esta impresión artística muestra cómo el efecto de lente gravitatoria, provocado por una galaxia intermedia, magnifica, aclara y distorsiona la apariencia de una remota fusión de galaxias que se encuentra detrás, a mucha distancia. El punto de vista del observador se mueve hacia los lados para que la galaxia distante aparezca, primero a un lado, donde se ve muy débil, y luego justo detrás del objeto de primer plano, apareciendo entonces impresionantemente ampliada y aumentando su brillo total aparente. Crédito: ESO/M. Kornmesser

El sistema de estas dos galaxias en colisión se asemeja a un objeto que está mucho más cerca de nosotros: las Galaxias Antena. Se trata de una espectacular colisión entre dos galaxias que se cree que han tenido una estructura de disco en el pasado. Mientras que el sistema de las Antenas está formando estrellas a un ritmo de sólo unas pocas decenas de la masa de nuestro Sol cada año, en el mismo tiempo H1429-0028 convierte una masa de gas de más de 400 veces la masa del Sol en nuevas estrellas.

Rob Ivison, Director de Ciencia de ESO y coautor del nuevo estudio, concluye: "ALMA nos ha permitido resolver este dilema porque nos ha proporcionado información sobre la velocidad del gas en las galaxias, lo que hace posible distinguir los diversos componentes, revelando la firma clásica de una fusión de galaxias. Este hermoso estudio capta una fusión galaxia en plena acción, justo en el momento en el que desencadena un estallido extremo de formación estelar".

Notas

[1] Entre el conjunto de instrumentos que se usaron para proporcionar evidencias que ayudasen a desentrañar los misterios de este caso, se encontraban ALMA, APEX, VISTA, el Telescopio Espacial Hubble de NASA/ESA, el Telescopio Gemini Sur, el Telescopio Keck-II, el Telescopio Espacial Spitzer de la NASA, el conjunto Jansky Very Large Array, CARMA, IRAM y SDSS y WISE.

Información adicional

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Ministerio de Ciencia y Tecnología de Taiwán (MOST), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).

La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.

Este trabajo se presentó en un artículo titulado “Herschel-ATLAS and ALMA HATLAS J142935.3-002836, a lensed major merger at redshift 1.027”, por Hugo Messias et al., y aparece el 26 de agosto de 2014 en la versión digital de la revista Astronomy & Astrophysics.

El equipo está compuesto por Hugo Messias (Universidad de Concepción, Chile; Centro de Astronomía y Astrofísica de la Universidad de Lisboa, Portugal), Simon Dye (Escuela de Física y Astronomía, Universidad de Nottingham, Reino Unido), Neil Nagar (Universidad de Concepción, Chile), Gustavo Orellana (Universidad de Concepción, Barrio Universitario, Chile), R. Shane Bussmann (Centro de Astrofísica Harvard-Smithsonian, EE.UU.), Jae Calanog (Departamento de Física y Astronomía, Universidad de California, EE.UU), Helmut Dannerbauer (Universidad de Wien, Instituto de Astrofísica, Austria), Hai Fu (Departamento de Astronomía, Instituto de Tecnología de California, EE.UU), Edo Ibar (Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile), Andrew Inohara (Departamento de Física y Astronomía, Universidad de California, EE.UU), R. J. Ivison (Instituto de Astronomía, Universidad de Edimburgo, Royal Observatory, Reino Unido; ESO, Garching, Alemania), Mattia Negrello (INAF, Observatorio Astronómico de Padua, Italia), Dominik A. Riechers (Departamento de Astronomía, Instituto de Tecnología de California, EE.UU; Departamento de Astronomía, Universidad de Cornell, EE.UU), Yun-Kyeong Sheen (Universidad de Concepción, Barrio Universitario, Chile), Simon Amber (The Open University, Milton Keynes, Reino Unido), Mark Birkinshaw (Laboratorio de Física H. H. Wills, Universidad de Bristol, Reino Unido; Centro de Astrofísica Harvard-Smithsonian, EE.UU), Nathan Bourne (Escuela de Fíisica y Astronomía, Universidad de Nottingham, Reino Unido), Dave L. Clements (Grupo de Astrofísica del Imperial College, Londres, Reino Unido), Asantha Cooray (Departamento de Física y Astronomía, Universidad de California, EE.UU; Departamento de Astronomía, Instituto de Tecnología de California, EE.UU), Gianfranco De Zotti (INAF, Observatorio Astronómico de Padua, Italia), Ricardo Demarco (Universidad de Concepción, Barrio Universitario, Chile), Loretta Dunne (Departamento de Física y Astronomía, Universidad de Canterbury, Nueva Zelanda; Instituto de Astronomía, Universidad de Edinburgh, Royal Observatory, Reino Unido), Stephen Eales (Escuela de Física y Astronomía, Universidad de Cardiff, Reino Unido), Simone Fleuren (Escuale de ciencias Matemáticas, Universidad de Londres, Reino Unido), Roxana E. Lupu (Departamento de Física y Astronomía, Universidad de Pennsylvania, EE.UU), Steve J. Maddox (Departamento de Física y Astronomía, Universidad de Canterbury, Nueva Zelanda; Instituto de Astronomía, Universidad de Edimburgo, Royal Observatory, Reino Unido), Michał J. Michałowski (Instituto de Astronomía, Universidad de Edimburgo, Royal Observatory, Reino Unido), Alain Omont (Instituto de Astrofísica de París, UPMC Univ. París, Francia), Kate Rowlands (Escuela de Física & Astronomía, Universidad de St Andrews, Reino Unido), Dan Smith (Centro de Investigación en Astrofísica, Inetituto de Investigación de Ciencia & Tecnología, Universidad de Hertfordshire, Reino Unido), Matt Smith (Escuela de Física y Astronomía, Universidad de Cardiff, Reino Unido) y Elisabetta Valiante (Escuela de Física y Astronomía, Universidad de Cardiff, Reino Unido).

Contactos:

Hugo Messias 
Universidad de Concepción, Chile /
Centro de Astronomia e Astrofísica,
Universidade de Lisboa, Portugal
Tel: +351 21 361 67 47/30
Email: [email protected]

Valeria Foncea 
Directora de Comunicaciones y Educación
Observatorio ALMA
Santiago, Chile
Tel: +56 2 2467 6258
Cel: +56 9 7587 1963
Correo electrónico: [email protected] 

Richard Hook
Encargado de Prensa, ESO
Garching, Alemania
Tel: +49 89 3200 6655
Cel: +49 151 1537 3591
Correo electrónico: [email protected] 

Charles E. Blue 
Encargado de Comunicaciones
Observatorio Nacional de Radio Astronomía
Charlottesville VA, EE.UU.
Tel: +1 434 244 6896
Cell: +1 434.242.9559
E-mail: [email protected] 

Masaaki Hiramatsu
Encargado de Educación y Extensión, NAOJ Chile
Observatorio de Tokio, Japón
Tel: +81 422 34 3630
Correo electrónico: [email protected]